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Natural gas meets 23% of  the  
world’s energy consumption 

Global Energy Consumption 
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Source: World Gas Conference, 2003 



Source – IAE, Lippman Consulting 

US gas potential increased 4 to 6 times 
from 1998 to 2008 

This is 
due to the 
economic 

success 
of  the 
shale 
plays 

 

 

(150 Tcf in 1998 and 500-1000 Tcf in 2008 – Arthur, 2008)   
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Let ‘s talk about shale-gas 
 

What is unconventional in shale gas? 
 

Special characteristics of  shale 
 

Fractures, fractures, fractures, … 
 

Where is the gas coming from? (matrix support?) 
 

What governs production performance? 
 

Modeling flow in fractured shale 
 

Unconventional flow in shale matrix 
 

Are microfractures the third porosity? 
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What is unconventional in shale gas? 
 



Conventional and unconventional gas plays 
Conventional Gas Plays in the US 

Shale-Gas Plays in the US 

Tight-Gas Plays in the US 

Reservoir Basin centered accumulation 

Source rock 
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UNCONVENTIONAL 
Shale-gas     Tight-gas 
Reservoir     Reservoir 
    

   Source                   Basin-centered 
     Rock    Accumulation 

CONVENTIONAL 
Sandstone 

Gas Reservoir 
 

Conventional 
Trap 



Unconventional shale-gas 
 

Geologically, shale-gas reservoirs are distinguished by 
their complex and  unusual petrophysical properties.  
 

 Good understanding of  the petrophysical characteristics 
 of  shale-gas reservoirs is essential; however, no paradigm-
 shift is  necessary for the geologic description of  shale-
 gas reservoirs (Shanley et al., 2004) 
 
This distinction may not be sufficient for all disciplines 
 

 Unless unusual petrophysical properties of  shale lead to 
 unconventional physics of  flow, shale-gas may not be as 
 unconventional for a reservoir engineer as it is for a 
 geologist  

 
Unconventional flow physics = Paradigm shift  
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Special characteristics of  shale 
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Shale Gas Reservoirs 

Diameters of  pores in shale: 10-9 m ≤ dpore ≤ 10-6 m 
 

Shale matrix permeability:     10-9 md ≤ k ≤ 10-3 md 
 
 

Gas Storage: 
     i) Free gas in  
        intergranular  
        porosity and in 
        the kerogen pores 
 

     ii) Adsorbed gas on  
         the surface of  the  
         organic content 
 

    iii) Soluble gas in solid organic  
          materials (kerogen, clays, etc.) 

adsorbed 
gas 

kerogen 

free 
gas shale 
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Micro-pores Nano-pores 

Porosity and Permeability Ranges 
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Fluid flow in Nano-Darcy Shale 
“… numerical modeling requires gas permeabilities 2 to 4 
orders of magnitude greater than observed to match flow 
rates and ultimate recoveries … Some other, higher 
permeability pathway through shale seems necessary.” 
                  Cluff, Shanley, and Miller, AAPG 2007 
 
 

FRACTURES IN SHALE 

Field Scale (m) 

Core 
Scale 
(cm) 

Micro Scale (mm) 
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Fractures, fractures, fractures, … 
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From Rimrock Energy, SPE 119896 
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Drainage area question: 
Larger area or more efficient drainage? 
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What governs production performance? 
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Productivity 
increases with 

increasing 
matrix 

permeability   
for km ≤ 10-5  

 

When flow 
capacity of  

natural 
fractures is 

reached, no 
additional 

productivity is 
possible  

Effect of  Matrix Permeability 
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Effect of  Natural Fracture Permeability 
No difference in 

productivity with 
increasing 

natural fracture 
permeability 

 

Natural fracture 
permeability has 

little effect on 
productivity 

 

Flow capacity of  
the matrix is the 

limiting factor 
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Effect of  Natural Fracture Density 

Natural fracture 
density has 
significant effect 
on flow capacity 
of  matrix. 
 
Greater surface 
area for flow 
allows for a 
greater volume of  
fluid to be moved 
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Effect of  Hydraulic Fracture 
Conductivity 

Incremental 
productivity 

decreases as 
conductivity 

increases. 
 

Volume of  
fluid available 

to flow is 
limiting factor 
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Where is the gas coming from? (matrix 
support?) 
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From Pitman, Price, LeFever, USGS Paper 1653 

We cannot justify sustained 
productivities observed in 
the field based on fracture 
dominated flow. 
 
But, how much fluid can be 
moved from matrix to 
fracture network with Darcy 
flow and nano-Darcy 
permeability in the matrix? 
 
 

Missing something? 
Is flow negligible in matrix? 

Natural Fractures in a Bakken Core 

  



Matrix Flow Rates after  
27 Years of  Production  
Darcy Flow 

Most  
of  the 
production 
comes 
from the 
surface  
of  the 
matrix? 
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Going strong after 10 years 
Barnett (North Texas) well production 

    10 years of  production without support of  matrix?  
                                                                                                    After T. Blasingame 
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Modeling flow in fractured shale 
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SPE 119890 Mayerhofer et al. (2007) 

Modeling Fractures as a  
Hydraulic Fracture Network 

Modeling Flow in Fractured Shale 
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Modeling Fractures as a Network of  Natural Fractures 

Discrete Fracture Model 

Fractures 

Matrix 

Modeling Flow in Fractured Shale 

Physical System 
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Missing something? 
Where are the reservoir fractures? 
 

Pressure Buildup Test in Shale Reservoir (Field Data) 

No characteristic  
dual-porosity  
behavior  
(no derivative dip) 
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Effect of  the Choice between  
Dual-Porosity Models  

1.E-04 

1.E-02 

1.E+00 

1.E+02 

1.E+04 

1.E-08 1.E-06 1.E-04 1.E-02 1.E+00 1.E+02 1.E+04 

PSEUDOSTEADY MODEL 

PR
ES

SU
R

E 
AN

D
 D

ER
IV

AT
IV

E,
 p

si
 

DIMENSIONLESS TIME 

PRESSURE DERIVATIVE 

TRANSIENT MODEL 
PRESSURE DERIVATIVE 

The characteristic dip 
is only shown by the 
pseudosteady model 

Transient dual-porosity model is more appropriate in shale 
(What is in your reservoir simulator?) 
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Unconventional flow in shale matrix 
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FLOW REGIMES IN POROUS MEDIA 

Non-Linear Flow: High p, v, & k 
Macro-pores and fractures 

High Velocity Flow (Forcheimer’s Equation) 

Moderate Velocity, No-Slip Flow (Darcy’s Law) 

Linear and Laminar Flow: Moderate p, v, & k 
Micro-pores 

Low Velocity, Slip Flow (Klinkenberg effect) 

Non-Linear Flow:  
Low p, v, & k 
Core measurements 
nano-pores 
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Dual Mechanism-Dual Porosity  
Flow Model for Shale 

Mixed flow in shale matrix 
   

           Darcy flow in fractures 
                                 Darcy flow in matrix micropores 
                      Slip flow in matrix nanopores 

  

                 Dual porosity flow in reservoir 
        
       Fractures dominate flow 
       Matrix provides storativity 
       Flow in matrix is transient 
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Ozkan et al. (2010 ) 

Contribution of  slip flow to apparent shale permeability 

Mixed Flow in Shale Matrix 
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Are microfractures the third porosity? 
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Microfractures in shale 

Shale-matrix model with microfractures 
(Apaydin et al., 2011) 

Are microfractures 
the third porosity? 

Not in the 
conventional 
sense 
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Performances of  a fractured horizontal well in 

dual-porosity reservoirs with and without 
microfractures 

Shale-matrix model with microfractures (Apaydin et al., 2011) 
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Conclusions 

Our potential to recover gas from shale has been 
increasing due to 
 

   ●   new technologies to fracture horizontal wells 
 

   ●   better understanding of  flow and production   
     mechanisms 

 

Marginal economics of  shale-gas projects 
requires more improvements in  
 

   ●    characterization and modeling capabilities 
 

   ●    analysis and prediction tools and techniques 
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